Geodesics on Shape Spaces with Bounded Variation and Sobolev Metrics
نویسندگان
چکیده
This paper studies the space of BV 2 planar curves endowed with the BV 2 Finsler metric over its tangent space of displacement vector fields. Such a space is of interest for applications in image processing and computer vision because it enables piecewise regular curves that undergo piecewise regular deformations, such as articulations. The main contribution of this paper is the proof of the existence of a shortest path between any two BV 2 curves for this Finsler metric. The method of proof relies on the construction of a martingale on a space satisfying the Radon-Nikodym property and on the invariance under reparametrization of the Finsler metric. This method applies more generally to similar cases such as the space of curves with H metrics for k > 2 integer. This space has a strong Riemannian structure and is geodesically complete. Thus, our result shows that the exponential map is surjective, which is complementary to geodesic completeness in infinite dimensions. We propose a finite element discretization of the minimal geodesic problem, and use a gradient descent method to compute a stationary point of a regularized energy. Numerical illustrations show the qualitative difference between BV 2 and H2 geodesics. 2010 Mathematics Subject Classification: Primary 49J45, 58B05; Secondary 49M25, 68U05.
منابع مشابه
Constructing Reparameterization Invariant Metrics on Spaces of Plane Curves
Metrics on shape spaces are used to describe deformations that take one shape to another, and to define a distance between shapes. We study a family of metrics on the space of curves, which includes several recently proposed metrics, for which the metrics are characterised by mappings into vector spaces where geodesics can be easily computed. This family consists of Sobolev-type Riemannian metr...
متن کاملAn Overview of the Riemannian Metrics on Spaces of Curves Using the Hamiltonian Approach
Here shape space is either the manifold of simple closed smooth unparameterized curves in R or is the orbifold of immersions from S to R modulo the group of diffeomorphisms of S. We investige several Riemannian metrics on shape space: L-metrics weighted by expressions in length and curvature. These include a scale invariant metric and a Wasserstein type metric which is sandwiched between two le...
متن کاملR-transforms for Sobolev H-metrics on Spaces of Plane Curves
We consider spaces of smooth immersed plane curves (modulo translations and/or rotations), equipped with reparameterization invariant weak Riemannian metrics involving second derivatives. This includes the full H2-metric without zero order terms. We find isometries (called R-transforms) from some of these spaces into function spaces with simpler weak Riemannian metrics, and we use this to give ...
متن کاملConstructing reparametrization invariant metrics on spaces of plane curves
Metrics on shape space are used to describe deformations that take one shape to another, and to determine a distance between them. We study a family of metrics on the space of curves, that includes several recently proposed metrics, for which the metrics are characterised by mappings into vector spaces where geodesics can be easily computed. This family consists of Sobolev-type Riemannian metri...
متن کاملCurve Matching with Applications in Medical Imaging
In the recent years, Riemannian shape analysis of curves and surfaces has found several applications in medical image analysis. In this paper we present a numerical discretization of second order Sobolev metrics on the space of regular curves in Euclidean space. This class of metrics has several desirable mathematical properties. We propose numerical solutions for the initial and boundary value...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Imaging Sciences
دوره 9 شماره
صفحات -
تاریخ انتشار 2016